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Abstract 

We use the term conceptual simulation to refer to a type of everyday reasoning 

strategy commonly called “what-if” reasoning. It has been suggested in a number of 

contexts that this type of reasoning plays an important role in scientific discovery; 

however, little direct evidence exists to support this claim. We propose that conceptual 

simulation is likely to be used in situations of informational uncertainty, and may be used 

to help scientists resolve that uncertainty. We conducted two studies to investigate the 

relationship between conceptual simulation and informational uncertainty. Study 1 was 

an “in vivo” study of expert scientists; the results suggest that scientists do use conceptual 

simulation in situations of informational uncertainty, and that they use conceptual 

simulation to make inferences from their data, using the analogical reasoning process of 

alignment by similarity detection. Study 2 experimentally manipulated experts’ level of 

uncertainty and provides further support for the hypothesis that conceptual simulation is 

more likely to be used in situations of informational uncertainty. Finally, we discuss the 

relationship between conceptual simulation and other types of reasoning using qualitative 

mental models. 
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1. Introduction 

 In a famous anecdote, Einstein describes how, as a youth, he visualized himself 

chasing a beam of light, and he explains that later on, this imaginative leap contributed to 

his development of the theory of relativity (Einstein, 1979). Einstein’s thought 

experiment is one of the best-known examples of a type of “what if” reasoning that has 

been implicated in scientific discovery in a variety of fields. Other famous scientists who 

are reported to have engaged in thought experiments include Galileo, Newton, Maxwell, 

Heisenberg, and Schrödinger, to name a few (e.g. Shepard, 1988).  

Scientists are likely to use such thought experiments, or “what if” reasoning, 

when it is either impossible or impractical to conduct a physical experiment. In addition, 

from a purely theoretical perspective, “what if” reasoning offers several advantages. 

Unlike quantitative reasoning strategies, it does not require numerical precision. This 

may be useful a) when precise quantitative information is not available or b) when a 

scientist is attempting to develop a general, or high-level, understanding of a system. Like 

other forms of mental-model-based qualitative reasoning, “what-if” reasoning allows one 

to reason with partial knowledge (whether incomplete or imprecise) and hence to 

accommodate the ambiguity inherent in situations of uncertainty (Forbus, 2002). “What 

if” reasoning also allows the construction of multiple alternatives, which may be useful in 

generating predictions or explanations when scientists lack principled knowledge that can 

allow them to proceed in their reasoning with some measure of certainty. All these 

situations share a high level of uncertainty; thus, “what if” reasoning may be especially 

useful in some situations of uncertainty. 
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There are many types of uncertainty in complex domains such as scientific 

enquiry (Schunn, Kirschenbaum, & Trafton, under review). Schunn et al. differentiate 

between subjective uncertainty (what a person feels) and objective uncertainty 

(uncertainty in the information a person has). Our focus here is on informational 

uncertainty.  

For reasons discussed below, we concentrate our research on the data analysis 

phase of scientific discovery. During this phase, scientists must first recognize what 

information the data actually represent, and second, come to an understanding of what 

that representation actually means in terms of their research questions (i.e., interpret the  

data). Consequently, there are two general areas where scientists are likely to encounter 

informational uncertainty. First, the data themselves may literally be unclear: data may be 

missing, inaccurate, or noisy, for example, so that scientists must work to differentiate 

real phenomena from noise. Second, the meaning of the data may be unclear; for 

example, experimental results may be anomalous (i.e., incompatible with previously 

established empirical results or even theory), follow some unexpected or unusual pattern, 

or otherwise conflict with the scientist’s predictions. Part of the scientist’s task is to 

explain or otherwise resolve such expectation violations.  

In other complex domains, such as meteorology, we have found that when people 

experience informational uncertainty when using complex visualizations, they mentally 

transform the visualization by adding their own representation of uncertainty, in order to 

resolve it (Trickett, Trafton, Saner, & Schunn, in press). Consequently, we expect that 

when scientists experience informational uncertainty, they will try to resolve that 
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uncertainty, and we propose that “what if” reasoning is likely to be one strategy by which 

they attempt to do so, because it allows people to transform their current understanding 

by mentally constructing an alternative. “What if” reasoning allows people to think 

through the implications of different starting assumptions by playing out different 

scenarios and then to evaluate their plausibility. If this were the case, we would expect 

“what if” reasoning to occur particularly in association with tentative explanations, or 

hypotheses, that could account for particular instances of informational uncertainty. 

Furthermore, if “what if” reasoning were used to try to resolve such uncertainty, we 

would expect it to lead to an evaluation of the hypothesis, in order to determine whether 

it adequately accounts for the uncertainty and consequently resolves it. 

 What constitutes “what if” thinking? Brown (2002) proposes a three-step process 

that consists of first, visualizing some situation, second, carrying out one or more 

operations on it, and third, seeing what happens. The third part of the process—“seeing 

what happens”—is crucial. It distinguishes “what if” thinking from purely imagining, 

because during this third phase causal reasoning occurs to the results of the 

manipulation(s) of the second phase. A well-known example of this type of thinking is 

Lucretius’ attempt to show that space is infinite (Brown, 2002). Assuming space has a 

boundary (visualize a situation), throw an imaginary spear toward it (carry out an 

operation on the visualization). If the spear goes through, there is no boundary; if the 

spear rebounds, we infer a “wall” which must itself be in space that stopped the spear 

(see what happens). Consequently, space has no boundary (causal reasoning).  
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Although Lucretius is clearly not a layperson, it is easy to apply the same 

processes to everyday examples of this type of thinking. For example, suppose one is 

figuring out the steps by which to assemble a piece of furniture (e.g., Lozano & Tversky, 

2006), in the absence of clear written instructions, and prior to making any irreversible 

decisions. One might mentally start to arrange certain pieces where one thinks they 

should go (visualize a situation). Then one might mentally attempt to insert a new piece 

(carry out an operation on the visualization). One can then inspect the visualization to 

determine whether the new piece will fit (see what happens). Finally, one can determine 

whether the initial arrangement is correct and decide either to proceed with construction 

or to start over (causal reasoning). 

As this illustration shows, “what if” thinking is hardly the type of arcane activity 

frequently associated in the popular imagination with scientific genius, but rather an 

everyday reasoning strategy available to scientist and layperson alike. How important is 

such a strategy likely to be in the scientific reasoning process? On the one hand, scientific 

expertise—domain knowledge and skills—is acquired only after many years of education 

and practice (Ericsson & Charness, 1994; Ericsson, Krampe, & Tesch-Roemer., 1993; 

Schunn and Anderson, 1999). On the other hand, current research suggests that, as 

Einstein himself maintained, what sets scientific reasoning apart from everyday reasoning 

is not different processes, but simply greater precision, systematicity, and “logical 

economy” (Klahr & Simon, 1999). A full model of scientific discovery should therefore 

include relevant everyday reasoning strategies and heuristics. It has already been 

suggested that everyday reasoning strategies, such as mental simulation and other forms 
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of reasoning with qualitative mental models, play a role in a general understanding of 

natural phenomena and physical systems (e.g., Hayes, 1988; Williams & de Kleer, 1991). 

Our question is the extent to which one such strategy—“what if” reasoning—guides the 

reasoning of experts’ scientific reasoning.  

In fact, several everyday reasoning strategies have already been shown to play an 

important role in the process of science, strategies such as analogy (Dunbar, 1995, 1997; 

Gentner, 2002; Okada & Simon, 1998), attending to anomalies (Kulkarni & Simon, 

1988), collaboration (Azmitia & Crowley, 2001),  use of mental models (Forbus, 1983; 

Forbus & Gentner, 1997), and the like. The goal of this paper is to investigate the role of 

“what if” thinking in the scientific reasoning of contemporary scientists. 

There is some evidence in the cognitive science literature that scientists 

specifically use forms of “what if” reasoning. Reconstructions of historical discoveries 

and analyses of contemporary records such as journals and lab notebooks suggest that 

scientists conduct “mental experiments” in a process that mirrors an empirical experiment 

(Nersessian, 1999) or otherwise construct “runnable” mental models (e.g., Ippolito & 

Tweney, 1995). Empirical studies of contemporary scientists also find the use of mental 

experiments (e.g.,Clement, 2002a; Qin & Simon, 1990) and mental simulation 

(Schraagen, 1993). This research spans a wide variety of contexts (such as historical 

reconstruction, protocol study, and lab experiment), tasks (such as scientific discovery, 

experimental design, and prediction), and participants (from famous historical figures to 

contemporary expert practitioners to scientists-in-training).  
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Despite this body of research, it is difficult to draw general conclusions from the 

results. The nature of historical studies makes it impossible to determine whether the 

mental experimentation occurred in the course of the problem-solving or retrospectively 

(Saner & Schunn, 1999). Nor are the studies of contemporary scientists conclusive. Qin 

and Simon told participants to generate a mental image prior to performing the task, so 

that their use of mental experimentation may not have been spontaneous. The scientists 

observed by Schraagen and by Clement were not experts in the specific task domain, and 

therefore lacked precise domain knowledge. The use of “what if” reasoning in these 

studies was clearly spontaneous; however, perhaps the scientists were using it to 

compensate for their lack of domain knowledge (i.e., in this case, conceptual simulation 

was more of a lay strategy than an expert one). 

In sum, no experimental studies have been conducted with the express purpose of 

investigating the use of “what if” reasoning among expert, practicing scientists working 

in their own domain, and as a result, no clear picture has emerged as to when, how, and 

why scientists might use this strategy. Our goal is first, to gather evidence that expert 

scientists do, in fact, engage spontaneously in “what if” reasoning, and second, to 

investigate how they do so and how significant a role this strategy plays in their acts of 

scientific enquiry.  

Researchers use many different terms to describe the strategy we have loosely 

discussed as “what if” reasoning—mental experiment, thought experiment, inceptions, 

mental simulation, and so on. In all cases, however, the underlying strategy demonstrates 

the characteristics described by Brown (2002), discussed above.  In our study, we shall 
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refer to these separate processes—visualizing a situation, carrying out mental operations 

on it, and seeing what happens—collectively as “conceptual simulation.”  We believe this 

term captures the two most crucial aspects of this type of reasoning, namely, it occurs at 

the conceptual level (rather than, say, in any actual or external sense), and it involves 

mentally playing out, or “running,” a model of the visualized situation, in order that 

changes can be inspected.  

More specifically, conceptual simulation involves constructing and manipulating 

a mental model that not only derives from an external representation but is also an analog 

of it (Clement, 2002b; Nersessian, 1999; Schwartz & Black, 1996a). Functionally, 

conceptual simulations adapt the external representation by adopting hypothetical values 

and playing out their implications, to move beyond the information actually represented. 

This process allows new inferences about that information to be made. 

Our first challenge has been to develop a reliable means of identifying conceptual 

simulations, which are an internal cognitive process rather than a directly observable 

behavior. Our general method has been to collect verbal protocols of scientists solving 

problems in their own domain. This method is based on the assumption that contents of 

working memory are “dumped” into the speech stream, where they can be examined and 

coded (Ericsson & Simon, 1993). In order to increase the reliability of this detection and 

coding process, we have operationalized the notion of conceptual simulation such that the 

construct is empirically grounded and observable in the speech stream: in a continuous 

sequence of utterances, the scientist a) refers to a new representation of a system or 

mechanism, b) refers to transforming that representation spatially, in a hypothetical 
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manner, and c) refers to a result of the transformation. This three-stage process 

corresponds to the processes described by Brown (2002) in defining “what if” thinking. 

Our first study is exploratory, and examines the question of whether and to what 

extent practicing scientists spontaneously use conceptual simulations. We further 

investigate the extent to which this strategy is used to resolve specific instances of 

informational uncertainty, in a cycle of hypothesis statement and evaluation. In order to 

determine the significance of the relationship between “what if” reasoning and hypothesis 

evaluation, we investigate the frequency of use for other hypothesis-evaluation strategies 

that have been identified in the scientific reasoning literature. If “what if” reasoning plays 

a significant role in the hypothesis evaluation process, it should occur at least as 

frequently as these known strategies. Furthermore, there may be relationships between 

“what if” reasoning and these other strategies that can illuminate the overall process of 

resolving informational uncertainty. To foreshadow the outcome of Study 1, our results 

suggest that scientists do spontaneously use conceptual simulations, and they seem to do 

so as a means of resolving informational uncertainty. Study 2 is a laboratory 

experiment—also of expert scientists—in which we manipulate uncertainty in order to 

further test this hypothesis.  

 

2. Study 1 

 
2. 1. Method 
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Dunbar has demonstrated the value of naturalistic observation of scientists in 

uncovering previously underspecified strategies and dynamics in the science laboratory. 

We have therefore adapted Dunbar’s “in vivo” methodology for on-line observation of 

scientific thinking, in which participants perform their regular tasks and the experimenter 

observes and records their interactions (Dunbar 1995, 1997). We have focused our 

investigation on one specific scientific task—data analysis—because it is a crucial task 

for many scientific domains, one during which scientists attempt to account for their data 

and in which they are likely to experience a great deal of informational uncertainty. Data 

analysis is therefore likely to produce a rich record of scientific thinking and hypothesis-

generation about informational uncertainty.  

 2.1.1. Participants 

 Participants were recruited through personal connection of the experimenter or 

her associates. The sample of scientists was selected to represent a diverse array of fields, 

rather than just one particular subfield, and several different stages of data analysis, in 

order to make the results more generalizable. Observations were recorded from nine 

scientists in eight data analysis sessions. All the participants were either expert scientists 

who had earned their PhDs more than six years previously, or graduate students working 

alongside one of these experts. Four of the sessions involved an expert scientist working 

alone. Three of the group sessions involved a senior researcher and one or more graduate 

students; the remaining group session involved two expert scientists. (Some scientists 

were thus observed over more than one session.) Four sessions were in branches of 

physics (astronomy and computational fluid dynamics, or CFD), two were in 
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neuroscience (fMRI and neural spikes), and two were in cognitive psychology. Of the 

three datasets pertaining to computational fluid dynamics, one focused on a problem 

involving a submarine and two focused on laser pellet research.  

 

2.1.2. Procedure 

Participants agreed to contact a member of the research team when they were 

ready to conduct some analysis of recently acquired data, and an experimenter visited the 

scientists at their regular work location. All participants agreed to be videotaped during 

the session. Participants working alone were trained to give talk-aloud verbal protocols. 

For scientists working in groups, their conversation was recorded as they engaged in 

scientific discussion about their data. All participants were instructed to carry out their 

work as though no camera were present and without explanation to the experimenter 

(Ericsson & Simon, 1993).  

Details about each individual session are reported in Table 1. All utterances were 

transcribed and segmented according to complete thought (off-task utterances were 

excluded from analysis). Finally, a coding scheme (described below) was developed to 

explore the relationship between conceptual simulation, uncertainty, and hypothesis 

evaluation. 

 

--------------------Insert Table 1 about here-------------------- 
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2.1.3. Analysis Tools and Tasks  

 The psychology data were displayed numerically in Excel; all the other data were 

displayed using visualization tools specific to the domain. Fig 1. shows an example of the 

visualization software used by one of the physicists. 

 

--------------------Insert Fig. 1 about here-------------------- 

 

Although each scientist or group of scientists used different tools, their tasks 

shared several characteristics. They were all analyzing data that they themselves had 

collected, from observations, from a controlled experiment, or from running a 

computational model. They displayed the data using their regular tools. Apart from the 

second CFD laser session, which was a follow-up to the first session, all sessions 

represented the initial investigation of these data. Whether their interest was exploratory 

or confirmatory, their goal was to understand the fundamental processes that underlay the 

data. Table 2 summarizes the characteristics of each data analysis session. 

 

--------------------Insert Table 2 about here-------------------- 

 

2.1.4. Coding Scheme 

 The overall goal of this research was to investigate whether and when scientists 

use conceptual simulation, whether they use it to resolve informational uncertainty, and 

to what extent they do so, relative to other strategies. We predicted that scientists would 
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use conceptual simulation to evaluate hypotheses they proposed to account for 

informational uncertainty. We therefore developed a coding scheme that would allow us 

to identify conceptual simulations, hypotheses, and several strategies that have been 

shown to be associated with hypothesis evaluation. 

Conceptual simulation 

A conceptual simulation spans several utterances. It begins with a reference to a 

representation of a system or part of a system.  Mental operations are then carried out on 

this representation in order to simulate the system’s hypothetical behavior under certain 

circumstances. The initial representation may be grounded internally (for example, in 

domain knowledge or memory of a previously observed phenomenon) or externally (for 

example, in a displayed image). However, simply forming and transforming a mental 

image is not sufficient. The key feature of a conceptual simulation is that it involves a 

simulation “run” that is both hypothetical  (i.e., it does not merely reproduce observed 

behavior) and alters the starting representation, producing a different end state that can be 

inspected, in order to “see what happens” (cf Brown, 2002).  

In order to formally code conceptual simulations, we adapted Trafton's spatial 

transformation framework (Trafton, Trickett, & Mintz, 2005). Spatial transformations 

occur when a spatial object is transformed from one mental state or location into another 

mental state or location. They occur in a mental representation that is an analog of 

physical space. They can be performed purely mentally (e.g., purely within spatial 

working memory or a mental image) or “on top of” an existing visualization (e.g., a 

computer-generated image). (See Trafton, Trickett, Stitzlein, Saner, Schunn, & 
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Kirschenbaum, 2006 for more on spatial transformations.) This initial representation 

provides the starting point for a conceptual simulation. Therefore, we first identified 

references to a new representation. We then performed a spatial transformation analysis 

on the utterances that immediately followed, in order to determine whether any mental 

operations were applied to transform that representation. Some possibilities include 

rotation, modification (by addition or deletion), moving an image, animating features, 

and comparison. Finally, we identified the reference to the result of the transformation(s). 

Conceptual simulations may thus be defined formally as a specific sequence: 

1. refers to a new representation of a system or mechanism  

2. refers to transforming that representation spatially, in a hypothetical manner 
 
3. refers to a result of the transformation (seeing what happens). 
 
Table 3 illustrates examples of conceptual simulation. Note that although a 

conceptual simulation spans several utterances, collectively these are coded as only one 

conceptual simulation. (See Table 4 for additional examples of conceptual simulation, at 

http://www.cognitivesciencesociety.org/supplements/.) 

--------------------Insert Table 3 about here-------------------- 
 

Hypotheses  

Every utterance was examined, and all statements that attempted to explain or 

account for a phenomenon were coded as hypotheses, for example, “OK, so now he’s not 

showing activation for the motor preparation, so maybe that’s just a function of it being 

the first thing he did” (source: fMRI; hypothesis in bold type). 

Scientific reasoning strategies 
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 We selected several strategies from the scientific reasoning literature: data focus, 

empirical test, consult a colleague, tie-in with theory/domain knowledge, and analogy. 

Data focused strategies are highly relevant to scientific inquiry in general and to data 

analysis in particular. Testing a hypothesis by empirical means is part of the scientific 

method (Popper, 1956) and has been much studied in the scientific reasoning literature 

(e.g., Klahr & Dunbar, 1988; Klahr & Fay, 1990; Schunn & Anderson, 1999; Vollmeyer 

Burns, & Holyoak, 1996). Collaboration (consulting a colleague) has been shown to be 

instrumental in solving scientific problems in both instructional and professional settings 

(Azmitia & Crowley, 2001; Okada & Simon, 1997). Domain knowledge is also an 

important factor in expert performance among scientists (Chinn & Malhhotra, 2001; 

Schunn & Anderson, 1999), as is a deep understanding of the tools, instruments, and 

techniques used in a given domain (Schraagen, 1993; Schunn & Anderson, 1999). 

Finally, research has identified analogy as a powerful reasoning mechanism for science 

(Dunbar, 1997; Forbus & Gentner, 1997; Nersessian, 1992a; Thagard, 1992).  

Analogical reasoning involves mapping information from one domain or instance 

—the “source”—to another—the “target”—in order to make inferences about the target 

(Gentner, 1989). Different theories of analogy specify different processes by which the 

mapping between source and target occurs, for example, structural alignment (Gentner, 

1983; Holyoak, 1985) constraint satisfaction (Holyoak & Thagard, 1989), and similarity 

detection (e.g., Gentner & Markman, 1997). During the mapping or alignment phase, 

regardless of the specific mechanism by which it occurs, the relevant parts of the source 

are "applied" to the target, and inferences about the target are drawn. Alignment thus 
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involves an explicit or implicit comparison between two representations, and the 

detection of similarities between them.  

Gentner & Markman (1997) propose that analogy and similarity are related 

through the process of structural alignment. The difference lies in the relative importance 

of relational similarity (in analogy) and attribute similarity (in similarity judgments). 

Whereas analogical comparisons focus primarily on structural or relational similarity, 

similarity judgments focus more on commonalities between attributes, or surface 

features. (Note that “mere-appearance matches” have no relations in common, and are 

therefore are not discussed further here.)  Because of the visual/spatial nature of much of 

the data in these scientific domains, we expect the scientists to make a significant number 

of similarity judgments, in addition to more structurally focused analogical comparisons.  

According to Gentner and Markman, structural alignment guides the comparison process 

in both cases, analogy and similarity. Also, in both cases, the comparison process focuses 

on alignable differences, which allow a person to identify on relevant differences 

between the two entities being compared. We use the term “analogy” to refer to 

comparisons based primarily on structural or relational similarity, and the term 

“alignment” or  “alignment by similarity detection” to capture the process of comparison 

based primarily on attribute similarity, in which one representation is matched up to 

another, in order to detect relevant areas of similarity and difference. 

To code all these strategies, we identified all utterances that immediately followed 

a hypothesis that further elaborated the hypothesis, whether they supported or opposed it. 

Those utterances were coded as follows: 
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Data focus 

 Following Trafton et al. (2005), we coded statements that "read off" data from the 

visible display as data focus. Utterances that referred to looking at data in a different way 

(such as re-plotting the data or displaying it in a different visualization), to "tweaking" 

data (for example, by transformation or removing outliers, etc.), or to looking at data that 

were not currently on view but that were available were also coded as data focus 

strategies. See Table 5 for examples of data focus strategies. 

 
--------------------Insert Table 5 about here-------------------- 

 

Empirical test 

Utterances in which the scientist proposed to collect additional data were coded as 

empirical test strategies. These included experiment proposals, making plans to run a new 

experiment, planning to collect additional data for an existing experiment (for example, 

increasing the sample size), or planning to collect more observational data. Plans to build 

and run computational models were also coded as empirical test strategies. Table 6 

illustrates the coding of empirical test strategies.  

--------------------Insert Table 6 about here-------------------- 
 

Consult a colleague 

 Utterances that refer to showing the data to or asking the opinion of a co-worker 

or other expert were coded as consulting a colleague, for example, “I’m gonna have to 

discuss it with, ah, John when he gets back. And with Bob” (source: CFD—submarine). 

(Names have been changed to safeguard participants’ anonymity.) 
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Tie-in with theory/Domain knowledge 

 Utterances that referred to theoretical underpinnings of the data were identified 

and coded as tie-in with theory, for example, “But just in general, if you have, I mean in 

your, your theoretical ring galaxy of the computer…” (source: Astronomy). In addition, 

utterances that drew on domain-specific skills, such as an understanding of tools and 

techniques, were also included in this category, for example, “Ah, I’m beginning to 

wonder if we didn’t have enough velocity range all of a sudden” (source: Astronomy). 

Analogical reasoning 

Analogical reasoning was coded using the definition and coding scheme 

developed by Dunbar (1997). According to this scheme, an analogy exists when a 

scientist either refers to another base of knowledge to explain a concept or uses another 

base of knowledge to modify a concept. Analogies were coded at a general level, when 

both source and target were explicitly identified (e.g., "The atom is like the solar 

system") and at the level of the alignment by similarity detection. Table 7 illustrates this 

coding of analogy.  

 
--------------------Insert Table 7 about here-------------------- 

 

2.2. Results and Discussion 

 
 Eight datasets were analyzed, comprising 331 minutes of relevant protocol, 

broken into 3278 on-task utterances.  

2.2.1. Inter-rater reliability 

We used two approaches to establish inter-rater reliability. First, after one coder 
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had coded all the data for conceptual simulations, a second, independent coder coded ten 

percent of the entire dataset, pinpointing any conceptual simulations. (The data to be 

coded were selected from two domains by the first coder, because they contained 

examples of conceptual simulations and of sequences that it might be challenging to 

determine whether they were conceptual simulations or not.) To illustrate this approach 

in the CFD domain, consider the set of utterances in Table 8. The first coder identified 

that lines 6 to 12 contained a conceptual simulation, in which the speaker was trying to 

reconstruct how one of the modes could have grown at a slower rate than another. The 

first coder ended the conceptual simulation at line 12, noting that in lines 13 and 14, the 

scientist aligned the end result of the mode being fed with the displayed representation of 

the final growth of the other modes involved. The remainder of this section was not 

coded as conceptual simulation, because the scientist is recalling theoretical information 

about the way the modes interact. The second coder then reviewed this entire section, 

embedded within a much larger context of several previous and subsequent utterances, to 

determine whether a conceptual simulation occurred, and if so, which utterances it 

spanned. We initially took this coarse-grained approach, in order to establish that 

conceptual simulations could be reliably isolated in the speech stream. This approach 

resulted in 98% agreement, k = .91, p < .01. 

 

--------------------Insert Table 8 about here-------------------- 

 

Second, we performed a finer-grained analysis, coding for each utterance whether 
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it was part of a conceptual simulation or not. The same first coder’s ratings were used. 

We then selected thirty-three percent of the entire dataset for coding by yet a third 

independent coder. We divided each session’s data into three equal parts, based on the 

number of utterances, and selected the first, second, or third section at random from each 

dataset. As a result, the third coder coded one-third of each dataset, and collectively, the 

sections represented early, middle, and late analysis on the part of the scientist. The first 

coder’s ratings were not available to the third coder at any time during the process. To 

summarize the difference between the two rounds of coding, in the first, coarser-grained 

round, the second coder identified given sequences of utterances as comprising a 

conceptual simulation or not. In the second round, the third coder identified line by line 

whether or not each utterance was part of a conceptual simulation.  

 The third coder was trained to recognize conceptual simulations, by using 

examples that were not part of the to-be-coded data (see Appendix A for more 

information about the training). The coder examined each utterance and judged whether 

the speaker referred to a new representation, whether, immediately afterwards, the 

speaker referred to one or more mental operations that transformed that representation 

(spatial transformations), and whether the speaker referred to the result of those 

transformations. If the coder observed this sequence, the individual utterances were 

scored as part of a conceptual simulation. Utterances that did not contribute to this 

sequence were scored as “no conceptual simulation.” The third coder worked entirely 

independently of the first coder. The coders conferred once after the third coder had 

coded one dataset, in order to resolve any questions or difficulties on the part of the third 
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coder. After this initial conference, the two coders did not compare their judgments until 

the coding was complete. Agreement for this phase of the IRR coding was 98%, k = .75, 

p < .05.1 The level of agreement between the coders was thus good. All disagreements 

were resolved by discussion. 

 

2.2.2. Conceptual simulations  

There were 37 conceptual simulations throughout the protocols, an average of one 

conceptual simulation approximately every 9 minutes. Considering the large amount of 

time spent on other activities (such as choosing and setting up different visualizations, 

                                                
1 After the third coder had completed the coding, a 2x2 contingency table was 

constructed, counting the number of times the coders agreed there was no conceptual 

simulation, the number of times they agreed there was a conceptual simulation, the 

number of times coder 1 thought there was a conceptual simulation but coder 3 did not, 

and the number of times coder 3 thought there was a conceptual simulation but coder 1 

did not. The nature of the data was such that there were very many instances of “no 

conceptual simulation,” which were easy to identify (e.g., lines 2-5 of Table 7). The 

majority of coded utterances thus fell into the cell representing agreement on “no 

conceptual simulation.” However, since percent agreement does not appropriately take 

into account agreement by chance, Cohen’s kappa was used in addition to percent 

agreement (Cohen, 1960). Kappa of .7 is generally considered to represent satisfactory 

agreement. 
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reading off data from the visualizations, etc.), conceptual simulations occurred with 

sufficient frequency to be considered a real strategy used by the scientists. The frequency 

with which it was used compared with other strategies is discussed below.  

There were 71 hypothesis statements, an average of one hypothesis approximately 

every 4.5 minutes. Fifty-five (77%) of these hypotheses were elaborated, i.e., the scientist 

further considered the hypothesis. Only elaborated hypotheses were included in 

subsequent analyses. 

Thirty-two (86%) of the conceptual simulations occurred in reference to a 

hypothesis. Thus, the vast majority of conceptual simulations was coupled with the 

scientists’ efforts to construct a satisfactory explanation of their data. We focus our 

analyses on how these conceptual simulations were used. (When conceptual simulation 

did not immediately follow a hypothesis, it was used as a problem-solving strategy, such 

as to resolve a difficulty in mapping between the display color and changes in velocity, to 

determine the circumstances under which a phenomenon might diverge from a theoretical 

model, or to account for a discrepancy.) 

 We then investigated the relative frequency of conceptual simulation compared 

with other strategies. Each individual utterance of data focus and tie-in with 

theory/domain knowledge was counted as one instance. For example, the utterance “If I 

look at the average of that, it’s a nice clean spike” and the utterance that immediately 

followed it, “and I can look at the standard deviation around that and it’s pretty tight right 

in the middle where it needs to be” were coded as two instances of data focus (average, 

standard deviation) because the information extracted was different in each utterance. In 
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all other cases, the number of overall strategy uses was counted. For example, the 

sequence of utterances in a conceptual simulation was coded as one conceptual 

simulation. 

 First, raw frequencies for each strategy were counted, as shown in Table 9. 

Clearly, the most common strategy was data focus, that is, strategies that centered on the 

available data (as opposed to those whose focus was beyond the current data). This result 

is not surprising, given that the scientists’ task was data analysis. However, among the 

strategies that focused beyond the immediate data, tie-in with theory/domain knowledge, 

conceptual simulation, and analogical reasoning/alignment occurred most frequently. We 

expected that expert scientists would draw on their extensive domain knowledge in 

understanding and analyzing data, as discussed earlier. Similarly, the use of analogical 

reasoning as a strategy in scientific enquiry is well documented. However, the relatively 

large number of conceptual simulations is striking, and provides evidence that conceptual 

simulation is an authentic reasoning strategy used by experts performing naturalistic tasks 

in their own domain. 

Interestingly, proposing to collect more data and consulting colleagues occurred 

only rarely. Possibly, in the first case, the real-life expense (in time and money) of 

collecting more data made this a less attractive option than in laboratory studies of 

scientific reasoning, in which empirical test is frequently only a mouse-click away. Since 

several of the data analysis sessions involved more than one scientist, these scientists may 

have been less inclined to consult others, given that they were already working 

collaboratively (the single instance of this strategy occurred in an individual subject 
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case).  

 In addition to raw frequencies, the relative frequency of each type of strategy was 

calculated, also shown in Table 9. For this analysis, we identified whether or not a 

strategy was used in reference to each hypothesis. Table 9 shows the percentage of 

hypotheses for which a given strategy was used at least once (i.e., repeated uses were not 

counted). As expected, the results of this analysis again show the prevalence of strategies 

that focus on the data. However, in terms of strategies that focus beyond the data, 

conceptual simulation was used as frequently as or more frequently than any other 

strategy. This again suggests that conceptual simulation plays a significant role in 

scientists’ consideration and evaluation of hypotheses. 

 The use of analogical reasoning is also of interest. There were only two instances 

of general analogy, compared with 32 alignments. This result is consistent with findings 

of other studies in which analogy use has been found to be more "local" than "global" 

(Dunbar, 1997; Saner & Schunn, 1999). The use of alignment by similarity detection in 

relation to conceptual simulation is discussed in more detail below. 

 

--------------------Insert Table 9 about here-------------------- 

 

We proposed that conceptual simulation would help scientists to resolve 

informational uncertainty by allowing them to evaluate their hypotheses. We suggested 

that upon encountering informational uncertainty, scientists would develop a possible 

explanation to account for it. By then running a conceptual simulation, they would be 



Conceptual Simulations 

 

26 

 

able to play out the necessary details of that explanation, creating a new representation in 

order to “see what happens.” The resulting representation could then function as a point 

of comparison with the actual data representation. Insofar as the two representations 

match, the hypothesis would be at least supported, and therefore still offer a plausible 

explanation. If the relevant details do not match, the hypothesis would have to be 

rejected.  

Trafton et al. (2005) have shown that scientists frequently use alignment to 

connect internal and external representations; consequently, we hypothesized that 

alignment by similarity detection would be used by these scientists to link the internal 

(result of the conceptual simulation) and external (phenomenon in the data) 

representations. Alignment would potentially allow a direct comparison between the two 

representations, and thus could facilitate the evaluation of the hypothesis. If this were the 

case, conceptual simulation would most frequently be followed by alignment (in 

conjunction with a hypothesis), and, to the extent that the issue is successfully resolved, 

alignment by similarity detection would mark the end of the reasoning chain.  

The next analysis investigates this possibility by focusing on combinations of 

strategies. We calculated the frequencies of the transitions from one strategy to the next 

for all major strategies (Ericsson & Simon, 1993). In order to understand the more 

relevant connections between strategies, we limit our discussion to those sequences that 

occurred 15% or more of the time. These frequencies are represented in the transition 

diagram shown in Fig. 2.  

The transitions of primary interest are the frequency with which conceptual 
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simulation is followed by alignment, and the frequency with which alignment occurs at 

the end of the reasoning process. Here a very strong pattern is revealed. Conceptual 

simulations were almost always (91% of the time) immediately followed by alignment, 

and this sequence occurred more frequently than expected by chance, Χ2 (4) = 99.88, p < 

.001, Bonferroni adjusted Χ2s significant at p < .05. Alignments themselves were most 

likely to end the chain, a sequence that was more frequent than expected by chance, Χ2 

(4) 15.81, p = .003. Post-hoc comparisons showed that alignment at the end of the chain 

occurred significantly more frequently than alignment followed by theory, alignment, or 

conceptual simulation (the latter comparison was marginally significant), Bonferroni 

adjusted Χ2s significant at p < .05. The difference between the frequencies of alignment 

followed by data focus and alignment at the end of the chain was not significant. These 

results suggest that the process of alignment either resolved the hypothesis under 

evaluation and thus terminated the chain of reasoning, or failed to resolve the hypothesis, 

leading the scientist to seek more information from the display.  

 

--------------------Insert Fig. 2 about here-------------------- 

 

Several patterns emerge from the transition diagram in Fig. 2. A hypothesis was 

most likely to be followed by data focus, but was also followed fairly frequently by 

theory or directly by conceptual simulation. Data focus was almost always followed by 

more data focus, indicating numerous sequences in which the scientist focused explicitly 

on the data themselves. Theory was also most frequently followed by itself, suggesting 
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that the scientist engaged in in-depth consideration of theoretical constructs. Theory was 

also a gateway to extracting information and to conceptual simulation. None of these 

sequences was unexpected, given the nature of the scientists’ tasks. The frequency of the 

conceptual simulation —> alignment sequence, however, is striking, and suggests a tight 

coupling between the two strategies. It is in this combination of processes that the 

hypothesis evaluation took place.  

Fig. 3 illustrates this process of conceptual simulation and alignment-based 

similarity detection. In this example from the Astronomy dataset, the scientists were 

considering the cause of some deviations from the expected pattern of velocity contours. 

One of them proposed a “streaming motion hypothesis”; he proposed that the existence of 

streaming motions might be the cause of the distortion. He then constructed a mental 

representation of the theoretical appearance of the velocity contours (“a perfect spider 

diagram”). He mentally deleted any streaming motions from this representation (“if you 

looked at the velocity contours without any sort of streaming motions”) and identified 

how the lines would, then, hypothetically appear (“you’d probably expect [them] to go all 

the way across the ring.”), i.e., he was able to “see what happened.” Finally, he made a 

comparison between this new mental representation and the image on screen, noting that 

under these hypothetical circumstances, there would be no deviant segments of the 

contours (“without any sort of changes here in the slope”). Use of the word “here” and 

gestures to the screen to identify the actual deflected contour lines indicate the target of 

the comparison. In summary, the scientist suggested that the cause might be streaming 

motions, ran a conceptual simulation of the contours without streaming motions, noting 
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that under these circumstances there would be no deviations in the contours, pointed out 

that, in contrast, there were kinks in the contour lines, and concluded that consequently, 

the streaming motion hypothesis was supported by the appearance of the data. 

 

--------------------Insert Fig. 3 about here-------------------- 

 

2.2.3. Relationship between hypotheses and conceptual simulations 

 Why were only some hypotheses associated with conceptual simulation? 

Although almost all conceptual simulations followed a hypothesis, not all hypotheses 

were followed by a conceptual simulation. In this section, we attempt to tease apart why 

this might have been so. 

In general, a hypothesis represents a scientist’s best guess about an uncertain 

situation; however, there may be greater or lesser degrees of informational uncertainty 

associated with different hypotheses. If conceptual simulation is a strategy for resolving 

informational uncertainty, it should occur more frequently after hypotheses that relate to 

greater uncertainty. One way to measure the uncertainty associated with a hypothesis is to 

consider the scientist’s knowledge about the phenomenon to which the hypothesis 

pertains. If there is something in the data that violates the scientist’s expectations (such as 

a the major discrepancy between model and data), hypotheses pertaining to this 

phenomenon are likely to be associated with significant levels of uncertainty. If, 

however, the phenomenon itself is expected (e.g., in one psychology dataset the fact that 

subjects in the more difficult condition took longer than subjects in the control condition), 
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hypotheses pertaining to it are likely to be associated with less uncertainty. 

In order to investigate the relationship between the hypotheses and the data, the 

phenomenon behind each hypothesis was identified either as expected or as violating 

expectation. Three independent coders coded 15% of the data. Agreement between the 

coders was 87.5%, k = .75, p < .01; disagreements were resolved by discussion.  

 After the hypotheses were coded as referring to phenomena that either violated 

expectations or not, the use of conceptual simulation and data focus strategies to evaluate 

each type of hypothesis was counted. Our purpose was to determine the circumstances 

under which each strategy was used, consequently, only the first instance of each strategy 

use was counted. Table 10 shows the results of this analysis. As expected, there was no 

significant correlation between data focus and violate expectation (r = .18, p > .1), 

suggesting that data focus was a general strategy that cut across the different types of 

hypothesis under exploration.  However, the correlation between conceptual simulation 

and violate expectation was significant (r = .41, p < .01). Thus, conceptual simulation 

appears to be a strategy that is closely associated with the investigation of hypotheses that 

pertain to violations of the scientists’ expectations, that is, to circumstances under which 

there are greater levels of informational uncertainty. 

 
--------------------Insert Table 10 about here-------------------- 

 

2.3. Summary of Study 1 

 

 The verbal protocols collected for Study 1 provided a rich dataset by which to 



Conceptual Simulations 

 

31 

 

investigate the on-line thinking of practicing expert scientists as they analyze their own 

data. In the course of their analysis, the scientists develop hypotheses to account for 

aspects of the data and then evaluate those hypotheses in light of both their theoretical 

knowledge and the data themselves. The analyses presented above reveal several new 

findings about the processes by which scientists perform this task. First, they show that 

scientists use conceptual simulation as a means of evaluating hypotheses and that they do 

so relatively frequently compared with other strategies. We propose that scientists use 

conceptual simulation to generate a representation of a phenomenon under hypothetical 

circumstances, which then serves as a source of comparison with the actual data. The 

comparison between this hypothetical representation and the data takes place by a process 

of alignment by similarity detection, which allows the scientist to evaluate whether the 

hypothesis under consideration remains plausible or not. Finally, these results show that 

the use of conceptual simulation is strongly associated with conditions of informational 

uncertainty, as opposed to circumstances under which the scientist’s expectations were 

met. Study 2 investigates further the relationship between conceptual simulation and 

uncertainty by experimentally manipulating the scientists’ expectations. 

 

3. Study 2 

Although Study 1 found a strong relationship between informational uncertainty 

and conceptual simulation, this relationship was correlational. Temporally, the 

hypotheses preceded the conceptual simulations, and conceptual simulation was more 

associated with phenomena that violated the scientists’ expectations than phenomena that 
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matched them. Together, these facts support our interpretation that conceptual simulation 

is a strategy used in situations of informational uncertainty. However, the results of Study 

1 only suggest an association; they do not imply a causal relationship between 

informational uncertainty and conceptual simulation. In order to investigate this 

relationship further, we conducted a second study in which we manipulated scientists’ 

levels of certainty about data they would be examining.  

In order to retain experimental control, we conducted Study 2 as a laboratory 

study. However, in keeping with our goal to study the reasoning processes of practicing 

scientists, we replicated some of the important features of the “in vivo” Study 1. As in 

Study 1, our participants were expert or near-expert scientists, conducting a scientific 

activity in which they regularly engaged (in this case, understanding data collected by a 

third party). In Study 2, we focused on one domain, cognitive psychology, for which we 

ourselves had the necessary domain knowledge to construct realistic materials. 

 
3.1. Method 

 
3.1.1. Participants 

Participants were seven cognitive psychologists (four male, three female). Three 

were advanced graduate students, one was a post-doctoral fellow, and three were 

university faculty.  

3.1.2. Tasks 

 We created five tasks related to four topics within cognitive psychology—the 

Stroop effect, the "cocktail party effect," graph interpretation, and the effect on 
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performance of interruptions (the interruptions topic was divided into two tasks). These 

topics either concerned very well-known effects or they pertained to research conducted 

by participants themselves or by other members of the same lab who had presented talks 

on this research. Thus the participants were familiar with all the topics, and were 

considered expert in some of them.  

 The format of each task was as follows: A one-page, single-spaced text described 

a psychological experiment—the theoretical background and rationale for the experiment 

(from which predictions might be drawn) and a brief method section, describing the 

stimuli/tasks used, the experimental conditions, the participants, and the procedure. The 

second page contained a bar graph representing the results of the study and a caption 

summarizing those results, including any relevant statistical results. An example of the 

tasks can be found in Appendix B. 

The information in the theoretical background of the experiment was designed to  

lead the participant to have certain expectations about the results. There were two 

versions of each task, one in which the results of the experiment matched these 

expectations and an alternative version in which it did not. Thus two within-subjects 

conditions were created, an Expectation Violation (EV) condition and an Expectation 

Confirmation (EC) condition. The tasks were adapted from real experiments published in 

the psychological literature. However, they were scaled down and simplified, and in 

some cases the results were altered in order to create the two conditions described above.  

3.1.3. Task order 
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 Each participant performed one version (EV or EC) of each of the five tasks. 

Tasks were counterbalanced according to a Latin Square design, and the condition for 

each task was varied, such that each task was seen an approximately equal number of 

times in the EV or EC version, and each participant performed either two EV and three 

EC or two EC and three EV tasks. One task (the Interruptions task) was created as a 

sequence of two experiments; in experiment 1, the expectations were violated (EV 

condition), prompting a follow-up experiment, in which expectations were confirmed 

(EC condition). All participants performed both versions of the interruptions task.  

3.1.4. Procedure 

 Participants were trained to provide talk-aloud protocols while problem solving  

(Ericsson & Simon, 1993). They were given the tasks one at a time by the experimenter, 

and they were instructed to read the materials aloud. The first page of text ended with the 

statement, "The results of this experiment are presented below," followed by the question 

participants were to answer, "What do you think could account for these results?" Thus 

participants were required to propose at least one hypothesis about the experimental 

results. The extent to which they reasoned about their hypothesis or hypotheses was left 

entirely to the participant. Their responses were recorded by video camera. After 

completing the tasks, participants were asked orally whether the results of each task were 

expected or unexpected to them. The protocols were transcribed and segmented, and 

conceptual simulations were coded, as described in Study 1.  

 

3.2. Results and Discussion 



Conceptual Simulations 

 

35 

 

 

One task, the "cocktail party effect" task, was excluded from analysis because 

many participants found part of the experimental manipulation and the results confusing.  

 

3.2.1. Inter-rater reliability 

One coder coded all of the data, and a second coder coded a subset (ten percent) 

of the data. (Ten percent was sufficient in this study, because of the high reliability 

previously established in Study 1.) Initial agreement for the conceptual simulation coding 

was 97%, k = .92, p < .01. Thus agreement between the two coders was extremely strong. 

Any disagreements were resolved by discussion. 

 

3.1.2. Time on task 

Participants spent an average of 49.7 minutes performing the 4 tasks, and 

produced an average of 422 utterances (excluding participants’ initial reading of the task 

materials that described the study). Thus participants expended considerable time and 

effort performing the tasks, at least given that each task involved reasoning about only 

one experiment and one set of data.  

 

3.1.3. Use of conceptual simulation 

 Overall, participants used conceptual simulation 78 times, or approximately once 

every 4.5 minutes, on average. This rate was approximately double that of Study 1. One 

possible explanation for this difference is that in Study 2, the task was explicitly to 
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account for the data, whereas in Study 1, the task was to “do what you would normally do 

in looking at your data.” Thus in Study 1, participants had to spend time determining 

what specific task they would perform next, how to set up the display to accomplish it, 

and then actually change the display. In Study 2, apart from reading the introductory text, 

the entire session was spent trying to explain the data. 

 The mean number of conceptual simulations in the EV condition was 3.8, 

compared with 1.9 in the EC condition. Thus, participants used conceptual simulation 

twice as often in the EV as in the EC condition (these were within subjects conditions). A 

repeated measures ANOVA on these data was significant, F(1, 6) = 12.06, p < .05, 

showing that participants were significantly more likely to use conceptual simulation 

when their expectations were violated than when they were confirmed. This result held 

across all subjects and tasks. 

 

3.1.4. Local EV/EC coding 

 It is possible that the manipulation did not work in the predicted manner; that is, 

participants might not have been surprised by results in the EV condition, or might have 

found results in the EC condition surprising. In order to confirm that participants were 

indeed using conceptual simulation more frequently when their expectations were 

violated than when they were confirmed, a “local” EV/EC coding scheme was applied to 

the data. A two-stage system was used to determine whether each conceptual simulation 

occurred when the participant’s expectations had been violated or confirmed. First, 

internal evidence in the protocol was used. For example, “The effect of interruption 
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doesn’t seem too surprising, because, um, according to theory, er the goals decay 

quickly” was coded as EC, whereas “That’s very interesting, though, because I would 

have expected something [referring to null result]” was coded as EV. Second, if there 

were no explicit statements in a specific task’s protocol that could be coded as EV or EC, 

the participant’s self-report from the post-task interview was used. Any conceptual 

simulations that occurred with reference to these phenomena were coded as EC or EV 

accordingly, regardless of the experimental condition. 

 Again, one coder coded all the data, and a second, independent coder coded a 

subset (ten percent) of the data. Initial agreement was 98%, k = .77, p < .01, a very strong 

level of agreement. Any disagreements were resolved by discussion. Furthermore, for 

76% of the conceptual simulations, the local coding as EV or EC matched the 

experimental condition. Thus, although not perfect, overall the manipulation appears to 

have worked as intended. 

 

3.1.5. Use of conceptual simulation: Local coding 

 Two instances of conceptual simulation were not coded, because the participant 

was trying to decide whether the result was surprising or not. Sixty-eight percent of the 

conceptual simulations were associated with expectation violation, compared with 32% 

associated with expectation confirmation. A chi-square test showed that conceptual 

simulation was used when expectations were violated significantly more frequently than 

expected by chance, Χ2 (1) = 12.96, p < .001. This result echoes the 2:1 ratio of use 

produced by the experimental manipulation, and provides strong support for the 
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hypothesis that conceptual simulation is a strategy used under conditions of expectation 

violation and informational uncertainty.  

 

3.2. Summary of Study 2 

 

Study 2 provides further evidence that scientists use conceptual simulation 

spontaneously when reasoning about data, and that they are more likely to do so under 

conditions of informational uncertainty. Whereas Study 1 provided correlational support 

for this hypothesis, Study 2 explicitly manipulated the participants’ level of informational 

uncertainty, by generating situations in which either their expectations would be met or 

they would be violated. The results of Study 2 thus provide experimental confirmation of 

our interpretation of the results of Study 1.  

 

4. General Discussion and Conclusion 

 
These two studies show that practicing, expert scientists use conceptual 

simulation when working on naturalistic tasks in their own domain. This result 

corroborates previous research that argues for the use of mental 

experimentation/simulation in both historical discoveries and contemporary reasoning 

tasks. However, whereas historically based research depends on retrospective and 

narrative sources, our research finds evidence in the scientists’ on-line, verbalized 

thinking. Furthermore, whereas other studies have identified the use of this type of 

reasoning by scientists of varying degrees of expertise working in domains that are not 
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their own, and/or on artificial tasks, we have examined the behavior of professional, 

expert scientists working in their own domain on authentic scientific tasks.  

In addition, our research demonstrates that scientists are more likely to use 

conceptual simulation under situations of informational uncertainty. This is shown in the 

“in vivo” data, where conceptual simulation was associated with the evaluation of 

hypotheses related to unexpected phenomena, and it is further supported in the 

experimental study, in which levels of informational uncertainty were explicitly 

manipulated. Finally, the research shows how conceptual simulation helps resolve 

uncertainty: Conceptual simulation facilitates reasoning about hypotheses by generating 

an altered representation under the purported conditions expressed in the hypothesis and 

providing a source of comparison with the actual data, in the process of alignment by 

similarity detection.  

In-depth protocol studies, which use fewer participants than are generally 

involved in experimental research, always face questions about their generalizability. 

However, the consistency with which conceptual simulation was used by many 

individuals, as well as the range of scientific areas included in this research, suggest that 

the results of these two studies are likely to generalize to other scientists, at least insofar 

as they are performing data analysis. The use of conceptual simulation may vary in other 

scientific inquiry tasks, such as generating predictions from theories or designing 

experiments to test those theories. In general, however, we propose that scientists are 

likely to use conceptual simulation in situations of informational uncertainty, regardless 

of the specific task.  
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The cycle of hypothesis-conceptual simulation-alignment bears some resemblance 

to analogical reasoning, in that one representation (a “source”) is mapped onto another (a 

“target”), in order to make inferences about it. The conceptual simulation was the means 

by which the scientists generated the source of the comparison. The actual, displayed data 

representation, which the scientists were trying to understand, was the target. Alignment 

by similarity detection was a form of comparison that allowed the scientist to evaluate the 

hypothesis in order to understand something more about the underlying structure of the 

data representation.  

There are, however, important differences between conceptual simulation and 

analogical reasoning. First, in the data we examined, the process of alignment was 

primarily based on perception, because of the visual-spatial nature of the scientists’ data; 

in analogical reasoning in general, however, inferences drawn about the target are not 

necessarily grounded in perception. Second, analogical reasoning is a memory-based 

strategy, i.e., similar situations that have been previously observed are recalled and used 

to generate predictions for a novel situation. The protocol data in these two studies, 

however, suggests that although the initial representation in a conceptual simulation may 

be grounded in memory, the transformations that are applied to it appear to be 

constructed afresh with each simulation. In conceptual simulation, new representations 

are not generated solely by reference to a familiar situation, but by taking what is known 

and transforming it to generate a future state of a system. Thus conceptual simulation 

may be considered a form of model construction, which is likely to occur when no easily 

accessible, existing source for analogy is available. This situation may be similar to that 
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identified by Griffith and colleagues, who propose that when model search and analogy 

fail, scientists construct and manipulate mental models (e.g., by means of general 

structural transformation) (Griffith, Nersessian, & Goel, 2000). 

Like analogical reasoning, conceptual simulation can also be considered a type of 

reasoning with inductive mental models (e.g., Nersessian, 1992b; Schwartz & Black, 

1996b). Although the term “mental model” is used frequently, there is wide-scale 

disagreement about precisely what constitutes a mental model. In our view, mental 

models are dynamic and “runnable.” This means that the components of the model can be 

set in motion and their behavior and changes of state can be observed, in a process that 

mirrors observations of the physical components of a tangible model. The output of 

running a mental model is an inference about the outcome of a particular converging set 

of circumstances. By animating their mental models, people are able to simulate a 

system’s behavior in their “mind’s eye” and to predict one or more possible outcomes, 

even for situations in which they have no previous experience (Gentner, 2002). 

Conceptual simulation involves transforming (“running”) a representation, and inspecting 

the output, a changed representation that becomes the basis for inferences about the data. 

Conceptual simulations, like other kinds of mental model, rely on qualitative 

relationships, such as signs and ordinal relationships, relative positions and so on, rather 

than precise numerical representation. In general, mental models are particularly 

instrumental in guiding problem-solving when people lack a formal scientific 

understanding of a domain (e.g., Forbus, 1983; Gentner & Gentner, 1983; Kieras & 

Bovair, 1984). Although the expert scientists in our studies did not lack formal scientific 
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understanding, they did lack the precise knowledge to immediately solve the 

informational uncertainty they were experiencing. Conceptual simulation seems to have 

allowed them to engage in causal reasoning about a system, even in the midst of this 

informational uncertainty. 

As a form of “what if” reasoning, conceptual simulation is also strongly related to 

the type of thought experiment discussed by Nersessian (1992b). Nersessian also 

interprets thought experiments as a form of reasoning with mental models and proposes 

that such mental models are “temporary structures constructed in working memory for a 

specific reasoning task.” We have argued that conceptual simulations are similarly 

constructed to meet a specific, temporary need. Nersessian argues for the importance of 

this type of reasoning in instances of major conceptual change in scientific discovery. 

Unlike these thought experiments, which may lead to large-scale conceptual change, 

conceptual simulations may be considered small-scale, or “local,” thought experiments. 

Although we did not observe any major conceptual change in our data, we did witness 

numerous instances of scientists using conceptual simulation to get “unstuck” when they 

had reached an impasse in understanding their data, and in this sense, conceptual 

simulation may serve a similar function of helping a scientist move beyond what is 

currently known.  

In general, experts’ domain knowledge provides them with many existing 

solutions and analogs upon which to draw during problem-solving (e.g., Chi, Feltovich, 

& Glaser, 1981). Yet we found true experts generating conceptual simulations, rather 

than retrieving solutions from memory. We propose that conceptual simulation will be 
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used by experts when they are working either outside their immediate area of expertise or 

on their own cutting edge research—that is, in situations that go beyond the limits of their 

current knowledge. This interpretation meshes with Schraagen’s observation that 

conceptual simulation was used on a task in the domain of gustatory psychology by 

psychologists expert in domains other than gustatory psychology, but not by novices or 

by experts within the gustatory domain (Schraagen, 1993). Although Schraagen was led 

to conclude that it is therefore an intermediate strategy, his results are not inconsistent 

with our suggestion that experts working on a truly novel task in their own domain would 

engage in conceptual simulation. The extent to which novices are able to productively use 

conceptual simulation in situations of uncertainty remains a matter for investigation. We 

predict, however, that novices will be less capable of generating conceptual simulations 

because they lack domain knowledge, and that therefore they will use fewer conceptual 

simulations than experts. 

There are very few studies of expert scientists performing “real” scientific tasks. 

In his pioneering “in vivo” study of molecular biologists, Dunbar asked, “How do 

scientists really reason?” (Dunbar, 1995). Our studies contribute further to our 

understanding of how scientists really reason. Frequently, studies of experts employ 

problems that are well-understood for an expert and that can be solved by recalling either 

this very problem (i.e., by model-based search) or another that shares the same deep 

structure (i.e., by analogy, cf. Chi et al., 1981). In contrast, our studies show experts 

reasoning about problems for which neither they nor anyone else knows the answer. In 

such circumstances, they must construct new models “on the fly,” tailor-made to the 
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problem and its context. This strategy of conceptual simulation is similar to mental 

model-based strategies used by laypeople in reasoning about the everyday world. Expert 

scientists, however, have the domain knowledge that allows them to generate predictions 

that are accurate and therefore useful in the context of scientific problem solving.  

With the current emphasis in science education reform on authentic practice 

(NRC, 1996), these studies have practical implications for efforts to improve science in 

the classroom. Not only does current educational theory suggest that instruction should 

be situated in the context of authentic scientific questions to which students genuinely 

desire to learn the answer (Barron, Schwartz, Vye, Moore, Petrosino, Zech,  & Bransford, 

1998), but also that students be encouraged to use the tools and strategies of real 

scientific practice. Research has already shown the value of having students generate 

predictions prior to conducting experiments (White, 1993); however, the prediction 

generation process itself has been largely unexplored. It is possible that qualitative 

reasoning strategies, such as the use of mental models and conceptual simulation, can be 

explicitly taught to students, providing them with a more formal means to generate 

predictions, specify their implications, evaluate their accuracy, and identify potential 

causes of discrepancies. 

There have been many myths about how scientists operate, including the idea of 

the “lone scientist” toiling in isolation, the belief that scientific discovery is the result of 

genius, inspiration, and sudden insight, the assumption that hypotheses should always 

precede experimentation and observation, and especially the notion that scientists are 

unbiased processors of objective data. Research in cognitive science has helped to dispel 
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many of these myths; the current study contributes further to our understanding of the 

processes by which scientific knowledge actually develops in the real world. It provides 

evidence to support the claim that science advances not through the use of mysterious and 

inexplicable processes unique to a particular group of geniuses but through the systematic 

use of everyday processes. Conceptual simulation—a specific type of qualitative mental 

model—is one such everyday reasoning process.  
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Appendix A 
Conceptual Simulation Training 

 
We want you to read through every line in the protocol and mark it in the 

following way. First, you need to ask whether the speaker is creating a new mental 
representation. One way to think about this is to determine whether he or she is referring 
directly to what is currently on display on the computer screen. If so, there is no new 
mental representation. If the scientist is referring to something in his or her head, you 
should note that as a new representation. The new representation could refer to a memory 
of something he or she has already seen, or it could refer to a theoretical construct, or it 
could refer to a hypothetical situation that the scientist is constructing for the first time. 

When you identify a new representation, you should code the utterances that 
follow it, using the spatial transformation coding scheme. That is, if the scientist mentally 
manipulates or transforms the starting representation spatially, you should code that 
utterance accordingly. Finally, immediately after any utterances that you have coded as 
spatially transforming the starting representation, you should examine the next 
utterance(s) to determine whether there is a “result” of the transformations, or an ending 
representation that is different from the starting representation. If you find all three 
components of this sequence, you should code each utterance as conceptual simulation 
(CS). For any utterance that is not a part of this type of sequence, you should code it as 
no conceptual simulation (No CS). 

Here are two examples from the astronomy dataset that illustrate this coding 
scheme. In the first example, note that although the scientists are trying to explain a 
particular phenomenon by proposing different hypothetical situations, and although a 
new representation is generated, there is no conceptual simulation, because no spatial 
transformations are applied to the new representation. The entire sequence (refer to new 
representation—refer to mentally transforming representation—refer to result of 
representation) is not present. In the second example, there are a reference to a new 
representation, reference to several spatial transformations performed on that 
representation, and reference to an end result of those transformations. Consequently, 
each of those utterances is coded as CS. 
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Example 1: 
 

Utterance (scientist 1) Utterance (scientist 2) CS Coding 
Explanation 

(training purposes 
only) 

That might just be gas 
blowing from the star-
forming regions 

 No CS 

Scientist is trying to 
explain what might 
account for “stuff all 
over here” identified 
previously 

 
But that’s not a star-
forming region, though, 
at the centre left 

No CS Identifies feature of 
current display 

Centre left  No CS 
Searches display to 
identify area of 
interest 

 That one No CS Identifies area of 
interest 

Maybe this stuff is just 
sort of infalling  No CS 

Spatial 
transformation: 
mentally moves 
“stuff” from one 
location to another. 
However, coded as 
no CS because it 
does not follow a 
reference to a new 
representation, or 
lead to a changed 
representation 

I mean, you know, if 
there’s a big gas cloud…  No CS 

New representation. 
Coded as No CS 
because the 
representation is not 
transformed. 

 Infalling as a big blob? No CS Queries explanation 
Why not? Why not? 
Why can’t gas infall as a 
big blob? 

 No CS Reiterates 
explanation 

 
The pressure thing tends 
to push them apart, 
though 

No CS States domain 
knowledge 
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I mean, it seems like 
there should be a 
kinematic reason for that 

No CS States domain 
knowledge 

 Ah, I don’t see what it is No CS Unable to resolve 
 
 

Example 2: 
 

Utterance (scientist 1) Utterance (scientist 2) CS Coding 
Explanation 

(training purposes 
only) 

 It seems like the H1 disk 
here is offset No CS 

Scientist is looking 
at image of galaxy 
and interpreting it 

The H1 disk is 
offset…Can you have 
that happen? 

 No CS Questions 
interpretation 

 Sure, I, I, well, I think 
you can actually No CS  

 

Umm, I mean, 
remember, these things 
are in the elliptical 
orbits 

CS 

New representation 
(displayed image 
does not show 
anything about 
orbits) 

 

Things may be falling 
kind of inward as 
they’re going around the 
orbits, 

CS 

Spatial 
transformation: 
mentally moves 
matter from one 
place to another, 
and moves it around 
in orbit 

 
The gas pressure is sort 
of driving the H1 out a 
little bit more  

CS 

Spatial 
transformation: 
mentally moves the 
H1 from one 
location to another 

 
And when it falls back 
in because of the 
dissipation going on 

CS 

Spatial 
transformation: 
Mentally moves H1 
from one location to 
another 

 You could have it offset 
that way CS End result: offset 

disk 
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Appendix B 
Sample Materials for Study 2 

 
Interruptions 

 
Altmann & Trafton (in press) have suggested that there are 3 things that memory for 

goals depends on:   
1) Rehearsal (you may need to rehearse your goal to remember it later) 
2) Cues in the environment (i.e., something in the environment may remind you what 

your goal was) 
3) The fact that individual goals decay quite quickly (in seconds) 
 

Recently, Trafton ran an experiment to examine how rehearsal affected resuming a 
task after an interruption.  The task was set up so that participants were working on a goal 
as they got interrupted.  The experiment used two tasks, a primary task that participants 
worked on most of the time and a secondary task that was the “interrupting” task.  The 
primary task was a complex resource allocation task that had many different goals and 
many different things participants could do at any point in time.  The secondary task was 
a dynamic categorization task (the Ballas task, a lot like Argus). 

Participants worked on the primary task for approximately 20 minutes.  There were 
10 interruptions throughout the 20 minute scenario.  Each interruption followed a mouse-
click to ensure that a participant was working on a goal (or, rather, to ensure the 
participant was actively working on some task, not just thinking or spacing out).  There 
were two conditions: 
• A No Warning condition (NW) where participants were immediately taken to the 

secondary task. 
• A Warning condition (W) where participants were given 8 seconds to “prepare” for 

the secondary task.  Participants were warned they were switching to the secondary 
task by a set of “eyeballs” that appeared on the screen.  Once the eyeballs showed up, 
participants were not able to work on the primary task and were told to “remember 
what they were working on.” 
All participants were told that when they came back to the primary task, they were to 

resume where they left off (i.e., to remember the goal they were working on).   
There were 10 subjects in each condition. 
The secondary task lasted approximately 45 seconds.  
According to Altmann & Trafton, the Warning condition was expected to have a 

much faster resumption lag (RL) than the No Warning condition.  (A resumption lag is 
the time it takes people to resume a task after being interrupted; a regular lag is the time 
between key strokes without an interruption). 
 

The results of this experiment are presented below. What do you think could account 
for these results? 
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Error bars are standard error of the mean. 
 
There is a highly significant effect of interruption:  resuming a task after an 

interruption takes much more time than lags measured during the primary task. 
There is no effect of condition (F < 1). 
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Fig. 1. Screen snapshot of computational fluid dynamics data 
 
 

 
 
 



Conceptual Simulations 

 

57 

 

 
 
Fig. 2: Transition diagram showing the relationships among strategies. Percentages show 

the frequency with which one strategy followed another. 
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Fig. 3: Conceptual simulation used as source of comparison in alignment process. An 

anomaly in the external display functions as the target of the comparison, and the 

scientist uses conceptual simulation to generate the source of the comparison. 

 
 
 
 In a perfect sort of spider diagram, 

if you looked at the velocity contours 
without any sort of streaming 
motions, no, what I'm trying to say 
is, um, in the absence of streaming 
motions,  

without any sort of, um, changes 
             in the slope and stuff.     
 

Refers to new 
representation of a 

system 

Refers to transforming 
representation spatially, 

in a hypothetical 
manner  

Refers to result of 
transformation 

(source of comparison) 

Alignment 

Target of 
comparison 

CO
N

CE
PT

U
A

L 
SI

M
U

LA
TI

O
N

 

you'd probably expect these lines 
here [gestures] to go all the way 
across, you know, the ring, 
 

here 

[When he says “here,” he 
points to “bumpy” area of                                    
velocity contours]      
 



Conceptual Simulations 

 

59 

 

Table 1: Dataset characteristics 
 
 

Dataset On-task 
Utterances 

% of Total 
Utterances 

Number of 
Scientists 

Total Relevant 
Time 

Astronomy 656 76 2 49 minutes 

CFD submarine 437 42 1 39 minutes 

CFD laser 1 172 43 1 15 minutes 

CFD laser 2 184 74 1 13 minutes 

fMRI 215 72 2 55 minutes 

Neural spikes 217 64 2 54 minutes 

Psychology 1 481 89 3 31 minutes 

Psychology 2 916 64 2 75 minutes 
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Table 2: Characteristics of individual data analysis sessions 

 

Domain Research 
Stage 

Data 
Type Data Data Source Task 

Description 

Astronomy exploratory visual 

velocity 
contour 

lines laid 
over 

optical data 

telescope 
observations 

Understand flow 
of gas in galaxy 

CFD 
submarine confirmatory visual 2D line 

plots 
computational 

model 

Understand 
model in relation 
to empirical data 

collected by a 
different 

researcher 

CFD laser 
1 confirmatory visual 

contour 
plots or 
Fourier 

decompos-
ition  

computational 
model 

Understand 
growth rate and 

sequence of 
different modes 

CFD laser 
2 confirmatory visual 

contour 
plots or 
Fourier 

decompos-
ition  

computational 
model 

Follow-up Laser 
1 

fMRI confirmatory visual 

structural 
or 

functional 
brain 

images 

controlled 
experiment 

Identify areas of 
neural activity; 

evaluate 
experiment 
predictions 

Neural 
spikes exploratory visual neural 

spikes 
surgical 

observations 

Isolate single 
cell firings in 

order to 
distinguish real 
from spurious 

neurons 

Psychology 
1 exploratory numeric 

numerical 
in 

spreadsheet 

controlled 
experiment 

Seek evidence 
for strategies 

among subjects 
Psychology exploratory numeric numerical controlled Understand 
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2 in 
spreadsheet 

experiment relationship 
between subject 
and model data  
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Table 3: Examples of conceptual simulation (CS) 
 
 

Source Utterances Code Explanation 

Astronomy In a perfect sort of spider 
diagram CS 

Reference to new 
representation 

(“spider diagram”) 

 

if you looked at the velocity 
contours without any sort of 
streaming motions, no, what I’m 
trying to say is, um, in the 
absence of streaming motions 

CS 
continued 

Reference to 
transforming 
representation 

(mentally removing 
existing streaming 

motions) 

 
you'd probably expect these lines 
here [gestures] to go all  the way 
across, you know, the ring 

CS 
continued 

Reference to result 
(sees what happens) 

CFD 
submarine 

It is conceivably possible that 
this curve is floating around all 
over the place, and what they’re 
showing is an average [scientist 
is looking at a graphical 
representation (a curve) that  
represents the turbulence] 

CS 
Reference to new 

representation (“this 
curve”) 

 

so if this thing is really floating 
around that much, just up and 
down, and I’m at the extreme 
end, and if I average all of this 
stuff, 

CS 
continued 

Reference to 
transforming 
representation 

 then I may actually still get the 
curve right 

CS 
continued 

Reference to result 
(sees what happens) 
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Table 5: Examples of data focus strategies 
 
 

Source Utterance Explanation 

fMRI We can find out what the z-score of that one 
is, too. Let's see, it's 4.22, 4.23 Read off data 

Astronomy 
Actually, I know that the, this is a naturally 
weighted method. If we look at the robust, 
let's look at the robust weighted method 

Change 
visualization 

Psychology 1 So I mean this is a post-hoc hypothesis, that 
we could verify by looking at the patterns 

Examine additional 
available data 

Psychology 2 
We have an outlier there. We can get rid of 
that guy probably….That's more than three 
times the mean standard deviation 

Tweak data 
(remove outlier) 
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Table 6: Examples of empirical test strategies 
 
 

Source Utterance Explanation 

Astronomy 
Do you think it's worth getting some more 
[telescope] time, just to do an offset plane, 
or offset velocity? 

Collect more 
(observational) data 

fMRI 

But we also have to be cognizant of the 
limitations of the equipment we're working 
with. And we are, like I said, when we 
collect data again, for instance, we are 
going to get the whole brain. 

Collect more 
(experimental) data 

CFD (submarine) 
That means I have to tweak an input 
parameter on the flow code. And then re-
run it [the model]. 

Run computational 
model 
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Table 7: Examples of analogy and alignment (relevant phrases that pinpoint the actual 
analogy or alignment are in italics; utterances in Roman type are for context only, and 
were not coded as analogy/alignment) 
 
 

Source Utterance Explanation 

Astronomy Think of this [points to part of ring 
galaxy] as a spiral arm  

Explicit analogy between “spiral 
arm” (source) and “this” (ring 
galaxy); scientist is using the 

concept of a spiral arm to make 
inferences about the behavior of 
a system that is not a spiral arm 

CFD (laser 2) 

So [0-2] is going to be way below 
the black line…but he’s gonna 
grow at roughly the same rate [as 2-
0] which is what you would expect 

Alignment: scientist aligns 
growth rates of one mode (0-2)  

with another (2-0), and with 
theoretical expectations 

CFD (laser 2) 

The high modes are supposed to 
take off. They’re supposed to run 
faster, which means that if that guy 
took off first, then he should be 
like, dominating the whole action. 
Now the only possible way that that 
can’t happen is if this guy has some 
source somewhere, that he’s, like, 
being fed. And he is being fed…by 
the difference of these two guys. 

Alignment: scientist aligns his 
expectation that mode must be 

being “fed” with the data 
representation, which indicates 
that the mode is,in fact, being 

fed. 

CFD 
(submarine) 

You know what, this is an 
experiment that sets in a, in a tube, 
and they’ve got struts holding that 
sucker up onto the floor. I wonder 
if I’m seeing the wake of the struts, 
which, of course, we don’t have on 
our computational model—so that’s 
why we don’t see a dip. But we’re 
still off by a good few percent, way 
off there… 

Alignment: scientist aligns the 
experimental data with his image 

of the model data, after 
accounting for the presence of 
the struts; the alignment shows 

there are still significant 
differences between the model 

and experimental data  

Astronomy It’s, I mean, it seems to make sense, 
if that’s operating, if it’s all the 

Alignment: scientist aligns the 
output of his chain of reasoning 
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same velocity, it’s probably more 
or less a rigid body, so that the 
whole thing is—I mean, so does 
that make sense? No, it doesn’t 
really, nah, it’s not necessarily a 
right body… 

that suggests a rigid body with 
the actual data, which does not 

show a rigid body 
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Table 8: Illustration of initial approach to coding conceptual simulations (CS) (source: 
Laser 2) 
 
 Utterance Coding 

1 Was outrun by the next one down  
2 And I don’t know  
3 I just don’t know  

4 I’ll haveta get someone else’s interpretation 
of that  

5 I don’t understand that  

6 The high modes take off 

CS: New mental 
representation of 
beginning state (display 
shows end state)  

7 They’re supposed to run faster CS: Describes new 
representation 

8 Which means if that guy [mode 1]took off 
first 

CS: Mentally follows 
growth path of mode 1 

9 Then he should be like dominating the 
whole action 

CS: Mentally places mode 
1 in relation to mode 2 

10 Now the only possible way that that can’t 
happen 

CS: Mentally undoes 
growth path of mode 1 

11 Is if this guy [mode 2] has some source 
somewhere 

CS: Mentally adds source 
to representation of mode 
2 

12 That he’s like, being fed 
CS: Mentally adds source 
to representation to mode 
2 

13 And he is being fed Alignment 

14 
The only way he gets fed is by the 
difference of these two guys [additional 
modes] 

Alignment 

15 OK, the, the physics of this is  

16 The physics of this is any two modes that 
can add up  

17 Because of their non-linear action  
18 Feed the next one  
19 So the mode interacts with itself  
20 One-one, to produce a two  

21 But one and two can interact and produce a 
three  

22 But three, ah, three minus two can also 
produce one  
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23 So they sort of interact among themselves  
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Table 9: Frequencies of occurrence of hypothesis-evaluation strategies—total number of 

uses (raw frequency) and percentage of all hypotheses for which strategy was used 

(relative frequency). Note that because more than one strategy might be used with a given 

hypothesis, these percentages sum to more than 100 

 

Strategy Raw Frequency 
Relative Frequency 

(% hypotheses) 

Data focus 229 65% 

Tie-in with theory 51 35% 

Alignment 32 47% 

Conceptual simulation 32 46% 

Empirical test 3 .05% 

“Far” analogy 2 .04% 

Consult Colleague 1 .02% 
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Table 10: Percentages of violate expectation and no discrepancy hypotheses for which 
conceptual simulation and data focus were used 
 
 

 Violate Expectation No Discrepancy 

Conceptual Simulation 64% 21% 

Data focus 61% 79% 

 
 


